Степенево-показникові рівняння
Існує ще один вид рівнянь, про які варто поговорити в цій лекції – це степенево-показникові рівняння: вони містять змінну як в основі, так і в показнику степеня. Наприклад: .
В загальному вигляді такі рівняння можна записати як
$$(f(x))^{g(x)}=(f(x))^n$$ Розв’язок таких рівнянь розбивають на чотири випадки, які розглядаємо окремо:
$$g(x)=n$$ при $$f(x)\ne \{−1;0;1\};$$
$$f(x)=-1;$$
$$f(x)=0;$$
$$f(x)=1.$$
Після цього потрібно перевірити отримані корені.
Приклад Розв’язати рівняння $$(x^2+4x+4)^{2-3x}=1$$.
Розв’язок Вiдповiдь ПриховатиРозв’язокЗведемо рівняння до загального вигляду: $$(x^2+4x+4)^{2-3x}=(x^2+4x+4)^{0}$$Розглянемо перший випадок:$$(x^2+4x+4)^{2-3x}=(x^2+4x+4)^{0}\Longleftrightarrow 2−3𝑥=0$$ при $$x^2+4x+4\ne\{−1;0;1\}$$$$x=\dfrac{2}{3}.$$Перевіримо, щоби при цьому значенні $$x$$ виконувалась умова $$x^2+4x+4\ne\{−1;0;1\}$$:$$\left(\dfrac{2}{3}\right)^2+4\left(\dfrac{2}{3}\right)+4=\dfrac{4}{9}+\dfrac{24}{9}+\dfrac{36}{9}=\dfrac{64}{9}\ne\{−1;0;1\}.$$Розв’яжемо рівняння $$x^2+4x+4=-1$$:$$x^2+4x+4=-1\Longleftrightarrow x^2+4x+5=0$$$$D=4^2-4\cdot1\cdot5=-4Дискримінант від’ємний – рівняння не має коренів.Розв’яжемо рівняння $$x^2+4x+4=0$$:$$x^2+4x+4\Longleftrightarrow(x+2)^2=0$$$$x=-2$$ Проте цей корінь ми відкидаємо, $$0^6=0\ne1$$.Розв’яжемо рівняння $$x^2+4x+4=1$$:$$x^2+4x+4=1\Longleftrightarrow x^2+4x+3=0$$$$D=4^2-4\cdot1\cdot3=4>0$$$$x^{}_{1,2}=\dfrac{-4\pm\sqrt{4}}{2\cdot1}\Longleftrightarrow$$$$\left[ \begin{gathered} x=-1, \hfill \\ x=-3 \hfill \\ \end{gathered} \right. $$ Перевіряємо: $$1^{2-2(-1)}=1^4=1;1^{2-2(-3)}=1^8=1$$.В результаті ми отримали три корені: $$x \in \left\{-3;-1;\dfrac{2}{3}\right \}.$$Вiдповiдь. $$x \in \left\{-3;-1;\dfrac{2}{3}\right \}.$$
Last updated