Математика: арифметика, рівняння та нерівності
  • Зміст
  • Вступне слово
  • Арифметика
    • Прості та складені числа
    • Ознаки подiльностi натуральних чисел
    • Дроби та дiї над ними
    • Модуль числа
  • Пропорції та відсотки
    • Відсотки
    • Розв’язання задач на спiльну виконану роботу (задачi на продуктивнiсть)
  • Одночлени та многочлени
    • Одночлен
    • Многочлен
    • Дiї над многочленами
    • Формули скороченого множення
    • Розкладання многочлена на множники
    • Бiном Ньютона
  • Корiнь та його властивостi
    • Квадратний корiнь та його основнi властивостi
    • Корінь n-го степеня та його основні властивості
    • Ірраціональні вирази
      • Доповнюючий множник
      • Звiльнення вiд iррацiональностi у знаменнику (чисельнику) iррацiонального дробу
      • Доповнюючi множники для основних типiв iррацiональностей у знаменнику (чисельнику)
    • Додаток
  • Показниковi та логарифмiчнi тотожностi
    • Логарифм
    • Логарифмiчнi тотожностi
    • Логарифмування та потенцiювання
  • Системи алгебраїчних рiвнянь
    • Метод підстановки
    • Метод алгебраїчного додавання
    • Метод заміни змінної
  • Лiнiйнi та квадратнi рiвняння
    • Лiнiйнi рiвняння
    • Квадратнi рiвняння
      • Неповні квадратні рівняння
      • Повне квадратне рівняння та дискримiнант
      • Факторизація квадратного рівняння (розкладання на множники)
      • Теорема Вiєта
    • Бiквадратнi рiвняння, та рівняння, що зводяться до квадратних
  • Iншi види цiлих рiвнянь
    • Цiлi рацiональнi рiвняння вищих степенів
      • Метод підбору коренів
      • Метод заміни змінної
    • Рiвняння з модулями
      • Метод інтервалів
    • Рівняння з параметрами
      • Лінійне рiвняння з параметрами
      • Квадратне рівняння з параметрами
  • Цілі нерівності
    • Основні властивості
    • Лiнiйнi нерiвностi
    • Система та сукупність нерівностей
    • Нерiвностi з модулями
  • Метод інтервалів
    • Метод інтервалів
    • Дробово-рацiональнi нерiвності
    • Нерiвностi з параметрами
  • Дробово-раціональні рівняння
    • Дробово-раціональне рівняння
    • Раціональні рівняння з параметрами
  • Ірраціональні рівняння
    • Корабель на горизонтi
    • Iррацiональнi рiвняння з квадратним коренем
    • Корабль поза горизонтом
  • Ірраціональні нерівності
    • Метод відокремлення кореня
    • Методологiя розв’язання в залежностi вiд парності/непарностi степеня кореня
    • Метод iнтервалiв для iррацiональних нерiвностей
    • Нерiвностi з параметрами
  • Показникові рівняння
    • Вік Землі та скам’янілостей
    • Показникові рівняння
    • Показникові нерівності
    • Степенево-показникові рівняння
    • Зведення до однiєї основи
      • Показникові рівняння
    • Винесення множника
    • Рiвняння особливих видiв
    • Використання властивостей функцiй (монотонностi)
    • Показниково - степеневi рiвняння
    • Рiвняння з параметрами
    • Системи рівнянь
  • Показникові нерівності
    • Властивостi показникової функцiї та класифікація типiв задач
    • Методи розв’язання окремих типiв задач
    • Степенево - показниковi нерiвностi
  • Логарифмічні рівняння
    • Логарифмiчнi рiвняння
    • Логарифмування та потенцiювання
    • Використання логарифмiчних тотожностей для розв’язання окремих типiв задач
    • Системи рівнянь
  • Логарифмічні нерівності
    • Використання властивостей логарифмiв для розв’язання рiзних типiв задач
    • Замiна змiнної в логарифмiчних нерiвностях
    • Показниково-логарифмiчнi нерiвностi
    • Нерiвностi з параметрами
Powered by GitBook
On this page

Was this helpful?

  1. Цілі нерівності

Основні властивості

Ці операції можна використовувати для виконання рівносильних переходів, що не змінюють множини розв’язків нерівності:

  1. Співвідношення «менше» і «більше» протилежні одне одному.

    Наприклад: якщо $$8 > x$$, то $$x

  2. Відношення транзитивності:

    • якщо $$x

    • якщо $$x>a$$ і $$a>b$$, то $$x>b$$.

    Наприклад: якщо $$x

  3. Розкрити дужки в будь-якій частині нерівності.

    Наприклад:

    $$ \begin{align} \color{#1570bd}(x-4\color{#1570bd})\color{#1570bd}(1-x\color{#1570bd}) & \ge 0 \\ \color{#1570bd}(x-4-x^2+4x\color{#1570bd}) & \ge 0 \\ -x^2 + 5x -4 & \ge 0 \end{align}$$

    Вихідна нерівність Розкриваємо дужки Спрощуємо

  4. Звести подібні доданки в будь-якій частині нерівності.

    Наприклад:

    $$ \begin{align} x^3 - 8 & \lt x^2 - 3x -x^2 \\ x^3 - 8 & \lt \color{#1570bd}x^\color{#1570bd}2 - 3x - \color{#1570bd}x^\color{#1570bd}2 \\ x^3 - 8 & \lt - 3x \end{align}$$

    Вихідна нерівність Знаходимо подібні доданки Спрощуємо

  5. До обох частин додати або ж відняти будь-який вираз.

    Наприклад:

    $$ \begin{align} \sqrt{x} - x + 3 & \gt 2 \\ \sqrt{x} - x + 3 \color{#1570bd}- \color{#1570bd}2 & \gt 2 \color{#1570bd}- \color{#1570bd}2 \\ \sqrt{x} - x + 1 & \gt 0 \end{align}$$

    Вихідна нерівність Віднімаємо $$2$$ від обох частин Спрощуємо

  6. Обидві частини помножити або поділити на одне й те саме число, відмінне від нуля:

    • Якщо вираз додатний – знак нерівності залишається без змін.

      Наприклад:

      $$ \begin{align} 3x^2 & \gt 2 \\ \dfrac{3}{\color{#1570bd}3}x^2 & \gt \dfrac{2}{\color{#1570bd}3} \\ x^2 & \gt \dfrac{2}{3} \end{align}$$

      Вихідна нерівність Ділимо обидві частини на $$3$$ Спрощуємо

    • Якщо вираз від’ємний – знак нерівності змінюється на протилежний.

      Наприклад:

      $$ \begin{align} -x^2 - 2 & \gt 1 \\ (-x^2-2) \color{#1570bd}\cdot \color{#1570bd}(\color{#1570bd}-\color{#1570bd}1\color{#1570bd}) & \lt 1 \color{#1570bd}\cdot \color{#1570bd}(\color{#1570bd}-\color{#1570bd}1\color{#1570bd}) \\ x^2 + 2 & \lt -1 \end{align}$$

      Вихідна нерівність Множимо обидві частини на $$-1$$ та змінюємо знак на протилежний Спрощуємо

Перехід до якої нерівності буде рівносильним для виразу $$(1+x)(x-3)>2$$? $$2x+5 $$-x^2+2x+5 $$(x-3)>+3$$ $$x^2+2x+5

Перехід до якої нерівності буде рівносильним для виразу $$(x-2)(x+3) $$-x^2-x+6>0$$ $$(x-6) $$x^2+6 $$6-x>x^2$$

PreviousЦілі нерівностіNextЛiнiйнi нерiвностi

Last updated 6 years ago

Was this helpful?